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Comments (like this one) have been added in order to make sense
of some of the slides. Some of those comments represent what I
said, or might have said, in the talk.
The talk is based on the paper arXiv:0908.1920.
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Optimization problems

Minimize total length:

Spanning Tree

Matching

Traveling Salesman

2-factor

Edge Cover
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Replica/cavity method

Replica symmetric prediction of the length of the optimum solution
for large N. (Sketch of the background with a certain bias towards
people in the audience...)

Mézard-Parisi (1985–87), Matching, TSP

Krauth-Mézard (1989), TSP

Predictions tested by N. Sourlas, A. Percus, O. Martin,
S. Boettcher,...

Success of BP, D. Shah, M. Bayati,...
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Johan Wästlund Replica Symmetry and Combinatorial Optimization



Physics of Algorithms, Santa Fe 2009

Giorgio Parisi in Les Houches 1986, having calculated the π2/12
limit for minimum matching.
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Limits in pseudo-dimension 1

Limit costs for uniform [0, 1] edge lengths (no normalization
needed!)

Matching π2

12 ≈ 0.822 Mézard-Parisi, Aldous

Spanning tree ζ(3) ≈ 1.202 Frieze

TSP/2-factor
∫∞
0 ydx , (1 + x/2)e−x + (1 + y/2)e−y = 1

≈ 2.0415 Krauth-Mézard-Parisi, Wästlund (TSP ∼ 2-factor
proved by Frieze)

Edge cover 1
2 min(x2 + e−x) ≈ 0.728 Not yet proved, but

the bipartite case is done in joint work with M. Hessler
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Pseudo-dimension d

Pseudo-dimension d means P(l < r) ∝ rd as r → 0

For general d take

lij = (N · Xij)
1/d

where Xij is exponential(1). This normalization is different
from a moment ago! Now unit of length = distance at which
expected number of neighbors equals 1.

Theorem

For d ≥ 1,
Cost[Matching ]

N/2

p−→ βM(d)

Cost[TSP]

N

p−→ βTSP(d)

Replica symmetric predictions of βM(d) and βTSP(d) are correct
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The right hand side is the average length of an edge in the
solution, measured in the length unit at which the expected
number of neighbors is 1. What is new is that the theorem holds
also for d > 1, but I will not say so much about the parameter d in
the rest of the talk.
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Graph Exploration

2-person zero-sum game:

Alice and Bob take turns
choosing edges of a
self-avoiding walk

They pay the length of
the chosen edge to the
opponent,

or terminate by paying
θ/2 to the opponent

Edges longer than θ are
irrelevant!

θ ≥ 0
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Johan Wästlund Replica Symmetry and Combinatorial Optimization



Physics of Algorithms, Santa Fe 2009

Graph Exploration

2-person zero-sum game:

Alice and Bob take turns
choosing edges of a
self-avoiding walk

They pay the length of
the chosen edge to the
opponent,

or terminate by paying
θ/2 to the opponent

Edges longer than θ are
irrelevant!

θ ≥ 0
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Diluted Matching Problem

Optimization:

Partial matching

Cost = total length of
edges + θ/2 for each
unmatched vertex

Feasible solutions exist
also for odd N

θ ≥ 0
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Solution to Graph Exploration

Fix θ and edge costs

M(G ) = cost of diluted matching problem

f (G , v) = Bob’s payoff under optimal play from v

Lemma

f (G , v) = M(G )−M(G − v)
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Solution to Graph Exploration

Lemma

f (G , v) = M(G )−M(G − v)

Proof.

f (G , v) = min(θ/2, li − f (G − v , vi ))

M(G ) = min(θ/2 + M(G − v), li + M(G − v − vi ))

M(G )−M(G − v) = min(θ/2, li − (M(G − v)−M(G − v − vi )))

f (G , v) and M(G )−M(G − v) satisfy the same recursion.
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Solution to Graph Exploration

Alice’s and Bob’s optimal strategies are given by the optimum
diluted matchings on G and G − v respectively
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PWIT-approximation

Poisson Weighted Infinite Tree (Aldous)
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Johan Wästlund Replica Symmetry and Combinatorial Optimization



Physics of Algorithms, Santa Fe 2009

PWIT-approximation

Poisson Weighted Infinite Tree (Aldous)

θ-cluster = component of the root after edges of cost more than θ
have been deleted

Johan Wästlund Replica Symmetry and Combinatorial Optimization
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PWIT-approximation

The PWIT is a local weak limit of the mean field model:

Lemma

Fix positive integer k. Then there exists a coupling of the PWIT
and rooted KN such that

P(isomorphic (k, θ)-neighborhoods) ≥ 1− (2 + θ)k

N1/3

Has to be modified slightly for d > 1.
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Graph Exploration on the PWIT

Study Graph Exploration
on the PWIT!

What if the θ-cluster is
infinite???

Optimistic (Pessimistic)
k-look-ahead values f k

A

and f k
B Look k moves

ahead and assume the
opponent will pay θ/2
and terminate
immediately if the game
goes on beyond k moves

Infinite look-ahead values
fA and fB (when k →∞)

Johan Wästlund Replica Symmetry and Combinatorial Optimization
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Graph Exploration on the PWIT

Theorem

Almost surely fA = fB

Sketch of proof.

Let both Alice and Bob be
infinite look-ahead optimistic
players

If they do not agree on the
value of the game, play has to
go on forever

Reasonable lines of play do not
percolate

Contradiction!

Johan Wästlund Replica Symmetry and Combinatorial Optimization



Physics of Algorithms, Santa Fe 2009

Graph Exploration on the PWIT

Theorem

Almost surely fA = fB

Sketch of proof.

Let both Alice and Bob be
infinite look-ahead optimistic
players

If they do not agree on the
value of the game, play has to
go on forever

Reasonable lines of play do not
percolate

Contradiction!
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Replica Symmetry

fA = fB means Replica Symmetry holds: To find how to match v it
suffices to look at a neighborhood of size independent of N
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Johan Wästlund Replica Symmetry and Combinatorial Optimization



Physics of Algorithms, Santa Fe 2009

Replica Symmetry

fA = fB means Replica Symmetry holds: To find how to match v it
suffices to look at a neighborhood of size independent of N

KN'

&

$

%

qv����
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Replica Symmetry

fA = fB means Replica Symmetry holds: To find how to match v it
suffices to look at a neighborhood of size independent of N
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Cost[Diluted Matching]

N/2

p−→ βM(d , θ)

Johan Wästlund Replica Symmetry and Combinatorial Optimization



Physics of Algorithms, Santa Fe 2009

Results

Proof of convergence of

Cost[Matching]

N/2

involves θ →∞ (nontrivial)

βM(1) = π2/6 (Already mentioned, proved by Aldous in 2001)

βM(2) ≈ 1.14351809919776

βTSP(2) ≈ 1.285153753372032 But how do we get results for
the TSP? Let me explain by analogy to...
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Johan Wästlund Replica Symmetry and Combinatorial Optimization



Physics of Algorithms, Santa Fe 2009

Results

Proof of convergence of

Cost[Matching]

N/2

involves θ →∞ (nontrivial)

βM(1) = π2/6 (Already mentioned, proved by Aldous in 2001)

βM(2) ≈ 1.14351809919776

βTSP(2) ≈ 1.285153753372032 But how do we get results for
the TSP? Let me explain by analogy to...
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Refusal Chess

80a0Z0s0Z
7o0Z0j0Z0
60ZRZ0Z0Z
5Z0O0Z0Zq
40L0ZpZpO
3ZPZ0O0Z0
2PZ0Z0ZBZ
1Z0Z0Z0J0

a b c d e f g h
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In Refusal Chess, when a player makes a move, the opponent can
either accept (and play on) or refuse, in case the move is taken
back and the player has to choose another move. A player has the
right to refuse once per move.
For the chess players: A player is in check or checkmate if they
would be in ordinary chess (so the rules are kind of illogical; for
instance you cannot leave your king threatened just because you
can refuse your opponent to capture it in the next move). If a
player has only one legal move, the opponent cannot refuse it.
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Refusal Chess

80a0Z0s0Z
7o0Z0j0Z0
60ZRZ0Z0Z
5Z0O0Z0Z0
40L0ZpZpl
3ZPZ0O0Z0
2PZ0Z0ZBZ
1Z0Z0Z0J0

a b c d e f g h
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Refusal Chess

80L0Z0s0Z
7o0Z0j0Z0
60ZRZ0Z0Z
5Z0O0Z0Z0
40Z0ZpZpl
3ZPZ0O0Z0
2PZ0Z0ZBZ
1Z0Z0Z0J0

a b c d e f g h
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This would be a bad move in ordinary chess since Black can simply
take back with the rook. But in refusal chess it is not so clear...
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Refusal Chess

80L0Z0s0Z
7o0Z0j0Z0
60ZRZ0Z0Z
5Z0O0Z0Z0
40Z0ZpZpZ
3ZPZ0O0Z0
2PZ0Z0ZBZ
1Z0Z0l0J0

a b c d e f g h
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Black accepts White’s move and plays on. Now White is in trouble,
since refusing this move will allow Black to capture White’s queen.
But let us not analyze this particular position further.
The original position is taken from a spectacular finish by Jonathan
Yedidia, one of the participants of the conference and former chess
pro. He played 32 — Bh2+! and White resigned in view of 33.
Kh1 Qxh4!, after which 34. Qb7+ (or any other move) is
countered with a deadly discovered check.
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My tour is better than yours!

Alice and Bob play “My tour is better than yours!”

Bob has this edge
in his tour
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My tour is better than yours!

Alice and Bob play “My tour is better than yours!”

Alice says: “Good
for you, but I have
this edge in my
tour!”
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My tour is better than yours!

Alice and Bob play “My tour is better than yours!”

Bob says: “Well,
so do I”,
effectively
cancelling Alice’s
move (this is the
difference from
Graph
Exploration)
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My tour is better than yours!

Alice and Bob play “My tour is better than yours!”

“Allright”, says
Alice, “but I have
this edge and you
don’t!”
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My tour is better than yours!

Alice and Bob play “My tour is better than yours!”

Bob has already
admitted having
two edges from
that vertex, so he
cannot cancel this
move.
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My tour is better than yours!

Alice and Bob play “My tour is better than yours!”

Similarly, Alice
can refuse one of
Bob’s moves by
claiming that she
also has this edge
in her tour.

Johan Wästlund Replica Symmetry and Combinatorial Optimization



Physics of Algorithms, Santa Fe 2009

My tour is better than yours!

Alice and Bob play “My tour is better than yours!”

But if she
does...
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My tour is better than yours!

Alice and Bob play “My tour is better than yours!”

...she will
have to accept
Bob’s second
move, and so on...
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Here I am sweeping a number of details under the rug, but the
structure of the game is the same as in Refusal Chess (you always
play your second best move; we can call the game “Refusal
Exploration”). The results for this game and the conclusions for
the TSP are analogous to the results for matching.
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The end is near...

Future work

0 < d < 1

Games for other optimization problems (edge cover?)

Efficiency of Belief Propagation?

Computer analysis of games

RS holds for Chess but not Go???
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Refusal Chess Problem

80Z0Z0Z0Z
7SKZBjPS0
60Z0o0s0Z
5Z0Z0a0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0L0Z
1Z0Z0Z0Z0

a b c d e f g h

Mate in 2: (a) Ordinary chess (b) Refusal chess.
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For the chess players: This is a two-mover with one solution for
ordinary chess and a different solution for Refusal Chess. In
ordinary chess, the solution is 1. Ra8, with the variations 1. —
Rxf2, 2. f8Q, and 1. — Kxd7, 2. f8N.
In Refusal Chess the two keys are 1. f8R+ forbidding Kxf8, and
1. f8B+ again forbidding Kxf8. On 1. f8R+ Rf7 the mating moves
are 2. Qxf7 and 2. Rgxf7, while on 1. f8B+ Kd8, the mating
moves are 2. Qb6 and 2. Ra8.
So the problem is a so-called Allumwandlung: The white pawn
promotes to queen and knight in ordinary chess, and to rook and
bishop in refusal chess.
Notice that in Refusal, 1. f8Q+ doesn’t work since White then
cannot refuse 1. — Kxf8.
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